3.1.88 \(\int (a+b x^3)^2 \sin (c+d x) \, dx\) [88]

Optimal. Leaf size=188 \[ \frac {720 b^2 \cos (c+d x)}{d^7}-\frac {a^2 \cos (c+d x)}{d}+\frac {12 a b x \cos (c+d x)}{d^3}-\frac {360 b^2 x^2 \cos (c+d x)}{d^5}-\frac {2 a b x^3 \cos (c+d x)}{d}+\frac {30 b^2 x^4 \cos (c+d x)}{d^3}-\frac {b^2 x^6 \cos (c+d x)}{d}-\frac {12 a b \sin (c+d x)}{d^4}+\frac {720 b^2 x \sin (c+d x)}{d^6}+\frac {6 a b x^2 \sin (c+d x)}{d^2}-\frac {120 b^2 x^3 \sin (c+d x)}{d^4}+\frac {6 b^2 x^5 \sin (c+d x)}{d^2} \]

[Out]

720*b^2*cos(d*x+c)/d^7-a^2*cos(d*x+c)/d+12*a*b*x*cos(d*x+c)/d^3-360*b^2*x^2*cos(d*x+c)/d^5-2*a*b*x^3*cos(d*x+c
)/d+30*b^2*x^4*cos(d*x+c)/d^3-b^2*x^6*cos(d*x+c)/d-12*a*b*sin(d*x+c)/d^4+720*b^2*x*sin(d*x+c)/d^6+6*a*b*x^2*si
n(d*x+c)/d^2-120*b^2*x^3*sin(d*x+c)/d^4+6*b^2*x^5*sin(d*x+c)/d^2

________________________________________________________________________________________

Rubi [A]
time = 0.17, antiderivative size = 188, normalized size of antiderivative = 1.00, number of steps used = 14, number of rules used = 4, integrand size = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {3410, 2718, 3377, 2717} \begin {gather*} -\frac {a^2 \cos (c+d x)}{d}-\frac {12 a b \sin (c+d x)}{d^4}+\frac {12 a b x \cos (c+d x)}{d^3}+\frac {6 a b x^2 \sin (c+d x)}{d^2}-\frac {2 a b x^3 \cos (c+d x)}{d}+\frac {720 b^2 \cos (c+d x)}{d^7}+\frac {720 b^2 x \sin (c+d x)}{d^6}-\frac {360 b^2 x^2 \cos (c+d x)}{d^5}-\frac {120 b^2 x^3 \sin (c+d x)}{d^4}+\frac {30 b^2 x^4 \cos (c+d x)}{d^3}+\frac {6 b^2 x^5 \sin (c+d x)}{d^2}-\frac {b^2 x^6 \cos (c+d x)}{d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*x^3)^2*Sin[c + d*x],x]

[Out]

(720*b^2*Cos[c + d*x])/d^7 - (a^2*Cos[c + d*x])/d + (12*a*b*x*Cos[c + d*x])/d^3 - (360*b^2*x^2*Cos[c + d*x])/d
^5 - (2*a*b*x^3*Cos[c + d*x])/d + (30*b^2*x^4*Cos[c + d*x])/d^3 - (b^2*x^6*Cos[c + d*x])/d - (12*a*b*Sin[c + d
*x])/d^4 + (720*b^2*x*Sin[c + d*x])/d^6 + (6*a*b*x^2*Sin[c + d*x])/d^2 - (120*b^2*x^3*Sin[c + d*x])/d^4 + (6*b
^2*x^5*Sin[c + d*x])/d^2

Rule 2717

Int[sin[Pi/2 + (c_.) + (d_.)*(x_)], x_Symbol] :> Simp[Sin[c + d*x]/d, x] /; FreeQ[{c, d}, x]

Rule 2718

Int[sin[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-Cos[c + d*x]/d, x] /; FreeQ[{c, d}, x]

Rule 3377

Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + (f_.)*(x_)], x_Symbol] :> Simp[(-(c + d*x)^m)*(Cos[e + f*x]/f), x]
+ Dist[d*(m/f), Int[(c + d*x)^(m - 1)*Cos[e + f*x], x], x] /; FreeQ[{c, d, e, f}, x] && GtQ[m, 0]

Rule 3410

Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*Sin[(c_.) + (d_.)*(x_)], x_Symbol] :> Int[ExpandIntegrand[Sin[c + d*x], (a
+ b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, n}, x] && IGtQ[p, 0]

Rubi steps

\begin {align*} \int \left (a+b x^3\right )^2 \sin (c+d x) \, dx &=\int \left (a^2 \sin (c+d x)+2 a b x^3 \sin (c+d x)+b^2 x^6 \sin (c+d x)\right ) \, dx\\ &=a^2 \int \sin (c+d x) \, dx+(2 a b) \int x^3 \sin (c+d x) \, dx+b^2 \int x^6 \sin (c+d x) \, dx\\ &=-\frac {a^2 \cos (c+d x)}{d}-\frac {2 a b x^3 \cos (c+d x)}{d}-\frac {b^2 x^6 \cos (c+d x)}{d}+\frac {(6 a b) \int x^2 \cos (c+d x) \, dx}{d}+\frac {\left (6 b^2\right ) \int x^5 \cos (c+d x) \, dx}{d}\\ &=-\frac {a^2 \cos (c+d x)}{d}-\frac {2 a b x^3 \cos (c+d x)}{d}-\frac {b^2 x^6 \cos (c+d x)}{d}+\frac {6 a b x^2 \sin (c+d x)}{d^2}+\frac {6 b^2 x^5 \sin (c+d x)}{d^2}-\frac {(12 a b) \int x \sin (c+d x) \, dx}{d^2}-\frac {\left (30 b^2\right ) \int x^4 \sin (c+d x) \, dx}{d^2}\\ &=-\frac {a^2 \cos (c+d x)}{d}+\frac {12 a b x \cos (c+d x)}{d^3}-\frac {2 a b x^3 \cos (c+d x)}{d}+\frac {30 b^2 x^4 \cos (c+d x)}{d^3}-\frac {b^2 x^6 \cos (c+d x)}{d}+\frac {6 a b x^2 \sin (c+d x)}{d^2}+\frac {6 b^2 x^5 \sin (c+d x)}{d^2}-\frac {(12 a b) \int \cos (c+d x) \, dx}{d^3}-\frac {\left (120 b^2\right ) \int x^3 \cos (c+d x) \, dx}{d^3}\\ &=-\frac {a^2 \cos (c+d x)}{d}+\frac {12 a b x \cos (c+d x)}{d^3}-\frac {2 a b x^3 \cos (c+d x)}{d}+\frac {30 b^2 x^4 \cos (c+d x)}{d^3}-\frac {b^2 x^6 \cos (c+d x)}{d}-\frac {12 a b \sin (c+d x)}{d^4}+\frac {6 a b x^2 \sin (c+d x)}{d^2}-\frac {120 b^2 x^3 \sin (c+d x)}{d^4}+\frac {6 b^2 x^5 \sin (c+d x)}{d^2}+\frac {\left (360 b^2\right ) \int x^2 \sin (c+d x) \, dx}{d^4}\\ &=-\frac {a^2 \cos (c+d x)}{d}+\frac {12 a b x \cos (c+d x)}{d^3}-\frac {360 b^2 x^2 \cos (c+d x)}{d^5}-\frac {2 a b x^3 \cos (c+d x)}{d}+\frac {30 b^2 x^4 \cos (c+d x)}{d^3}-\frac {b^2 x^6 \cos (c+d x)}{d}-\frac {12 a b \sin (c+d x)}{d^4}+\frac {6 a b x^2 \sin (c+d x)}{d^2}-\frac {120 b^2 x^3 \sin (c+d x)}{d^4}+\frac {6 b^2 x^5 \sin (c+d x)}{d^2}+\frac {\left (720 b^2\right ) \int x \cos (c+d x) \, dx}{d^5}\\ &=-\frac {a^2 \cos (c+d x)}{d}+\frac {12 a b x \cos (c+d x)}{d^3}-\frac {360 b^2 x^2 \cos (c+d x)}{d^5}-\frac {2 a b x^3 \cos (c+d x)}{d}+\frac {30 b^2 x^4 \cos (c+d x)}{d^3}-\frac {b^2 x^6 \cos (c+d x)}{d}-\frac {12 a b \sin (c+d x)}{d^4}+\frac {720 b^2 x \sin (c+d x)}{d^6}+\frac {6 a b x^2 \sin (c+d x)}{d^2}-\frac {120 b^2 x^3 \sin (c+d x)}{d^4}+\frac {6 b^2 x^5 \sin (c+d x)}{d^2}-\frac {\left (720 b^2\right ) \int \sin (c+d x) \, dx}{d^6}\\ &=\frac {720 b^2 \cos (c+d x)}{d^7}-\frac {a^2 \cos (c+d x)}{d}+\frac {12 a b x \cos (c+d x)}{d^3}-\frac {360 b^2 x^2 \cos (c+d x)}{d^5}-\frac {2 a b x^3 \cos (c+d x)}{d}+\frac {30 b^2 x^4 \cos (c+d x)}{d^3}-\frac {b^2 x^6 \cos (c+d x)}{d}-\frac {12 a b \sin (c+d x)}{d^4}+\frac {720 b^2 x \sin (c+d x)}{d^6}+\frac {6 a b x^2 \sin (c+d x)}{d^2}-\frac {120 b^2 x^3 \sin (c+d x)}{d^4}+\frac {6 b^2 x^5 \sin (c+d x)}{d^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.20, size = 112, normalized size = 0.60 \begin {gather*} \frac {-\left (\left (a^2 d^6+2 a b d^4 x \left (-6+d^2 x^2\right )+b^2 \left (-720+360 d^2 x^2-30 d^4 x^4+d^6 x^6\right )\right ) \cos (c+d x)\right )+6 b d \left (a d^2 \left (-2+d^2 x^2\right )+b x \left (120-20 d^2 x^2+d^4 x^4\right )\right ) \sin (c+d x)}{d^7} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x^3)^2*Sin[c + d*x],x]

[Out]

(-((a^2*d^6 + 2*a*b*d^4*x*(-6 + d^2*x^2) + b^2*(-720 + 360*d^2*x^2 - 30*d^4*x^4 + d^6*x^6))*Cos[c + d*x]) + 6*
b*d*(a*d^2*(-2 + d^2*x^2) + b*x*(120 - 20*d^2*x^2 + d^4*x^4))*Sin[c + d*x])/d^7

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(598\) vs. \(2(188)=376\).
time = 0.08, size = 599, normalized size = 3.19 Too large to display

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x^3+a)^2*sin(d*x+c),x,method=_RETURNVERBOSE)

[Out]

1/d*(-a^2*cos(d*x+c)+2/d^3*a*b*c^3*cos(d*x+c)+6/d^3*a*b*c^2*(sin(d*x+c)-(d*x+c)*cos(d*x+c))-6/d^3*a*b*c*(-(d*x
+c)^2*cos(d*x+c)+2*cos(d*x+c)+2*(d*x+c)*sin(d*x+c))+2/d^3*a*b*(-(d*x+c)^3*cos(d*x+c)+3*(d*x+c)^2*sin(d*x+c)-6*
sin(d*x+c)+6*(d*x+c)*cos(d*x+c))-1/d^6*b^2*c^6*cos(d*x+c)-6/d^6*b^2*c^5*(sin(d*x+c)-(d*x+c)*cos(d*x+c))+15/d^6
*b^2*c^4*(-(d*x+c)^2*cos(d*x+c)+2*cos(d*x+c)+2*(d*x+c)*sin(d*x+c))-20/d^6*b^2*c^3*(-(d*x+c)^3*cos(d*x+c)+3*(d*
x+c)^2*sin(d*x+c)-6*sin(d*x+c)+6*(d*x+c)*cos(d*x+c))+15/d^6*b^2*c^2*(-(d*x+c)^4*cos(d*x+c)+4*(d*x+c)^3*sin(d*x
+c)+12*(d*x+c)^2*cos(d*x+c)-24*cos(d*x+c)-24*(d*x+c)*sin(d*x+c))-6/d^6*b^2*c*(-(d*x+c)^5*cos(d*x+c)+5*(d*x+c)^
4*sin(d*x+c)+20*(d*x+c)^3*cos(d*x+c)-60*(d*x+c)^2*sin(d*x+c)+120*sin(d*x+c)-120*(d*x+c)*cos(d*x+c))+1/d^6*b^2*
(-(d*x+c)^6*cos(d*x+c)+6*(d*x+c)^5*sin(d*x+c)+30*(d*x+c)^4*cos(d*x+c)-120*(d*x+c)^3*sin(d*x+c)-360*(d*x+c)^2*c
os(d*x+c)+720*cos(d*x+c)+720*(d*x+c)*sin(d*x+c)))

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 489 vs. \(2 (188) = 376\).
time = 0.34, size = 489, normalized size = 2.60 \begin {gather*} -\frac {a^{2} \cos \left (d x + c\right ) + \frac {b^{2} c^{6} \cos \left (d x + c\right )}{d^{6}} - \frac {2 \, a b c^{3} \cos \left (d x + c\right )}{d^{3}} - \frac {6 \, {\left ({\left (d x + c\right )} \cos \left (d x + c\right ) - \sin \left (d x + c\right )\right )} b^{2} c^{5}}{d^{6}} + \frac {6 \, {\left ({\left (d x + c\right )} \cos \left (d x + c\right ) - \sin \left (d x + c\right )\right )} a b c^{2}}{d^{3}} + \frac {15 \, {\left ({\left ({\left (d x + c\right )}^{2} - 2\right )} \cos \left (d x + c\right ) - 2 \, {\left (d x + c\right )} \sin \left (d x + c\right )\right )} b^{2} c^{4}}{d^{6}} - \frac {6 \, {\left ({\left ({\left (d x + c\right )}^{2} - 2\right )} \cos \left (d x + c\right ) - 2 \, {\left (d x + c\right )} \sin \left (d x + c\right )\right )} a b c}{d^{3}} - \frac {20 \, {\left ({\left ({\left (d x + c\right )}^{3} - 6 \, d x - 6 \, c\right )} \cos \left (d x + c\right ) - 3 \, {\left ({\left (d x + c\right )}^{2} - 2\right )} \sin \left (d x + c\right )\right )} b^{2} c^{3}}{d^{6}} + \frac {2 \, {\left ({\left ({\left (d x + c\right )}^{3} - 6 \, d x - 6 \, c\right )} \cos \left (d x + c\right ) - 3 \, {\left ({\left (d x + c\right )}^{2} - 2\right )} \sin \left (d x + c\right )\right )} a b}{d^{3}} + \frac {15 \, {\left ({\left ({\left (d x + c\right )}^{4} - 12 \, {\left (d x + c\right )}^{2} + 24\right )} \cos \left (d x + c\right ) - 4 \, {\left ({\left (d x + c\right )}^{3} - 6 \, d x - 6 \, c\right )} \sin \left (d x + c\right )\right )} b^{2} c^{2}}{d^{6}} - \frac {6 \, {\left ({\left ({\left (d x + c\right )}^{5} - 20 \, {\left (d x + c\right )}^{3} + 120 \, d x + 120 \, c\right )} \cos \left (d x + c\right ) - 5 \, {\left ({\left (d x + c\right )}^{4} - 12 \, {\left (d x + c\right )}^{2} + 24\right )} \sin \left (d x + c\right )\right )} b^{2} c}{d^{6}} + \frac {{\left ({\left ({\left (d x + c\right )}^{6} - 30 \, {\left (d x + c\right )}^{4} + 360 \, {\left (d x + c\right )}^{2} - 720\right )} \cos \left (d x + c\right ) - 6 \, {\left ({\left (d x + c\right )}^{5} - 20 \, {\left (d x + c\right )}^{3} + 120 \, d x + 120 \, c\right )} \sin \left (d x + c\right )\right )} b^{2}}{d^{6}}}{d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^3+a)^2*sin(d*x+c),x, algorithm="maxima")

[Out]

-(a^2*cos(d*x + c) + b^2*c^6*cos(d*x + c)/d^6 - 2*a*b*c^3*cos(d*x + c)/d^3 - 6*((d*x + c)*cos(d*x + c) - sin(d
*x + c))*b^2*c^5/d^6 + 6*((d*x + c)*cos(d*x + c) - sin(d*x + c))*a*b*c^2/d^3 + 15*(((d*x + c)^2 - 2)*cos(d*x +
 c) - 2*(d*x + c)*sin(d*x + c))*b^2*c^4/d^6 - 6*(((d*x + c)^2 - 2)*cos(d*x + c) - 2*(d*x + c)*sin(d*x + c))*a*
b*c/d^3 - 20*(((d*x + c)^3 - 6*d*x - 6*c)*cos(d*x + c) - 3*((d*x + c)^2 - 2)*sin(d*x + c))*b^2*c^3/d^6 + 2*(((
d*x + c)^3 - 6*d*x - 6*c)*cos(d*x + c) - 3*((d*x + c)^2 - 2)*sin(d*x + c))*a*b/d^3 + 15*(((d*x + c)^4 - 12*(d*
x + c)^2 + 24)*cos(d*x + c) - 4*((d*x + c)^3 - 6*d*x - 6*c)*sin(d*x + c))*b^2*c^2/d^6 - 6*(((d*x + c)^5 - 20*(
d*x + c)^3 + 120*d*x + 120*c)*cos(d*x + c) - 5*((d*x + c)^4 - 12*(d*x + c)^2 + 24)*sin(d*x + c))*b^2*c/d^6 + (
((d*x + c)^6 - 30*(d*x + c)^4 + 360*(d*x + c)^2 - 720)*cos(d*x + c) - 6*((d*x + c)^5 - 20*(d*x + c)^3 + 120*d*
x + 120*c)*sin(d*x + c))*b^2/d^6)/d

________________________________________________________________________________________

Fricas [A]
time = 0.35, size = 129, normalized size = 0.69 \begin {gather*} -\frac {{\left (b^{2} d^{6} x^{6} + 2 \, a b d^{6} x^{3} - 30 \, b^{2} d^{4} x^{4} + a^{2} d^{6} - 12 \, a b d^{4} x + 360 \, b^{2} d^{2} x^{2} - 720 \, b^{2}\right )} \cos \left (d x + c\right ) - 6 \, {\left (b^{2} d^{5} x^{5} + a b d^{5} x^{2} - 20 \, b^{2} d^{3} x^{3} - 2 \, a b d^{3} + 120 \, b^{2} d x\right )} \sin \left (d x + c\right )}{d^{7}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^3+a)^2*sin(d*x+c),x, algorithm="fricas")

[Out]

-((b^2*d^6*x^6 + 2*a*b*d^6*x^3 - 30*b^2*d^4*x^4 + a^2*d^6 - 12*a*b*d^4*x + 360*b^2*d^2*x^2 - 720*b^2)*cos(d*x
+ c) - 6*(b^2*d^5*x^5 + a*b*d^5*x^2 - 20*b^2*d^3*x^3 - 2*a*b*d^3 + 120*b^2*d*x)*sin(d*x + c))/d^7

________________________________________________________________________________________

Sympy [A]
time = 0.64, size = 226, normalized size = 1.20 \begin {gather*} \begin {cases} - \frac {a^{2} \cos {\left (c + d x \right )}}{d} - \frac {2 a b x^{3} \cos {\left (c + d x \right )}}{d} + \frac {6 a b x^{2} \sin {\left (c + d x \right )}}{d^{2}} + \frac {12 a b x \cos {\left (c + d x \right )}}{d^{3}} - \frac {12 a b \sin {\left (c + d x \right )}}{d^{4}} - \frac {b^{2} x^{6} \cos {\left (c + d x \right )}}{d} + \frac {6 b^{2} x^{5} \sin {\left (c + d x \right )}}{d^{2}} + \frac {30 b^{2} x^{4} \cos {\left (c + d x \right )}}{d^{3}} - \frac {120 b^{2} x^{3} \sin {\left (c + d x \right )}}{d^{4}} - \frac {360 b^{2} x^{2} \cos {\left (c + d x \right )}}{d^{5}} + \frac {720 b^{2} x \sin {\left (c + d x \right )}}{d^{6}} + \frac {720 b^{2} \cos {\left (c + d x \right )}}{d^{7}} & \text {for}\: d \neq 0 \\\left (a^{2} x + \frac {a b x^{4}}{2} + \frac {b^{2} x^{7}}{7}\right ) \sin {\left (c \right )} & \text {otherwise} \end {cases} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x**3+a)**2*sin(d*x+c),x)

[Out]

Piecewise((-a**2*cos(c + d*x)/d - 2*a*b*x**3*cos(c + d*x)/d + 6*a*b*x**2*sin(c + d*x)/d**2 + 12*a*b*x*cos(c +
d*x)/d**3 - 12*a*b*sin(c + d*x)/d**4 - b**2*x**6*cos(c + d*x)/d + 6*b**2*x**5*sin(c + d*x)/d**2 + 30*b**2*x**4
*cos(c + d*x)/d**3 - 120*b**2*x**3*sin(c + d*x)/d**4 - 360*b**2*x**2*cos(c + d*x)/d**5 + 720*b**2*x*sin(c + d*
x)/d**6 + 720*b**2*cos(c + d*x)/d**7, Ne(d, 0)), ((a**2*x + a*b*x**4/2 + b**2*x**7/7)*sin(c), True))

________________________________________________________________________________________

Giac [A]
time = 4.84, size = 131, normalized size = 0.70 \begin {gather*} -\frac {{\left (b^{2} d^{6} x^{6} + 2 \, a b d^{6} x^{3} - 30 \, b^{2} d^{4} x^{4} + a^{2} d^{6} - 12 \, a b d^{4} x + 360 \, b^{2} d^{2} x^{2} - 720 \, b^{2}\right )} \cos \left (d x + c\right )}{d^{7}} + \frac {6 \, {\left (b^{2} d^{5} x^{5} + a b d^{5} x^{2} - 20 \, b^{2} d^{3} x^{3} - 2 \, a b d^{3} + 120 \, b^{2} d x\right )} \sin \left (d x + c\right )}{d^{7}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^3+a)^2*sin(d*x+c),x, algorithm="giac")

[Out]

-(b^2*d^6*x^6 + 2*a*b*d^6*x^3 - 30*b^2*d^4*x^4 + a^2*d^6 - 12*a*b*d^4*x + 360*b^2*d^2*x^2 - 720*b^2)*cos(d*x +
 c)/d^7 + 6*(b^2*d^5*x^5 + a*b*d^5*x^2 - 20*b^2*d^3*x^3 - 2*a*b*d^3 + 120*b^2*d*x)*sin(d*x + c)/d^7

________________________________________________________________________________________

Mupad [B]
time = 0.62, size = 184, normalized size = 0.98 \begin {gather*} \frac {\cos \left (c+d\,x\right )\,\left (720\,b^2-a^2\,d^6\right )}{d^7}-\frac {b^2\,x^6\,\cos \left (c+d\,x\right )}{d}+\frac {30\,b^2\,x^4\,\cos \left (c+d\,x\right )}{d^3}-\frac {360\,b^2\,x^2\,\cos \left (c+d\,x\right )}{d^5}+\frac {6\,b^2\,x^5\,\sin \left (c+d\,x\right )}{d^2}-\frac {120\,b^2\,x^3\,\sin \left (c+d\,x\right )}{d^4}-\frac {12\,a\,b\,\sin \left (c+d\,x\right )}{d^4}+\frac {720\,b^2\,x\,\sin \left (c+d\,x\right )}{d^6}-\frac {2\,a\,b\,x^3\,\cos \left (c+d\,x\right )}{d}+\frac {6\,a\,b\,x^2\,\sin \left (c+d\,x\right )}{d^2}+\frac {12\,a\,b\,x\,\cos \left (c+d\,x\right )}{d^3} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(c + d*x)*(a + b*x^3)^2,x)

[Out]

(cos(c + d*x)*(720*b^2 - a^2*d^6))/d^7 - (b^2*x^6*cos(c + d*x))/d + (30*b^2*x^4*cos(c + d*x))/d^3 - (360*b^2*x
^2*cos(c + d*x))/d^5 + (6*b^2*x^5*sin(c + d*x))/d^2 - (120*b^2*x^3*sin(c + d*x))/d^4 - (12*a*b*sin(c + d*x))/d
^4 + (720*b^2*x*sin(c + d*x))/d^6 - (2*a*b*x^3*cos(c + d*x))/d + (6*a*b*x^2*sin(c + d*x))/d^2 + (12*a*b*x*cos(
c + d*x))/d^3

________________________________________________________________________________________